1. 非对称加密:公钥与私钥

  • 密钥生成:用户通过算法(如椭圆曲线加密)生成一对密钥:

    • 公钥

      :可公开,用于生成钱包地址(如哈希处理后的公钥)。

    • 私钥

      :必须保密,用于签名交易,证明所有权。

  • 作用:私钥对交易签名,他人用公钥验证签名,确保交易真实且未被篡改。

2. 交易签名与验证

  • 签名过程

    1. 用户用私钥对交易数据(如转账金额、接收地址)进行签名,生成唯一数字签名。

    2. 矿工节点收到交易后,用发送者的公钥验证签名是否匹配。

  • 防篡改:任何对交易数据的修改都会导致签名无效,确保交易完整性。

3. 区块链的哈希加密

  • 区块链接:每个区块包含前一个区块的哈希值,形成不可逆的链式结构。

  • 哈希函数:使用SHA-256等算法,将区块数据(交易列表、时间戳等)压缩为固定长度的哈希值。

  • 防篡改机制:若某区块数据被修改,其哈希值会变化,后续所有区块的哈希值也将失效,网络节点会立即检测到异常。

4. 共识算法中的加密(如PoW)

  • 工作量证明(PoW):矿工通过计算哈希难题竞争记账权,确保网络去中心化和抗攻击能力。

  • 加密意义:虽然PoW本身不是直接加密数据,但通过计算难题保护区块链历史记录的不可篡改性。

5. 网络通信加密

  • 节点间传输:交易数据在节点间传输时,可能使用SSL/TLS等协议加密,防止中间人窃听。

关键加密技术总结

技术类型

用途

典型算法/方法

非对称加密

身份认证与交易签名

椭圆曲线加密(ECDSA)

哈希函数

数据完整性验证与区块链链接

SHA-256

数字签名

交易授权

私钥签名+公钥验证

共识算法

网络安全性与去中心化

工作量证明(PoW)

常见误区澄清

  • 匿名性≠隐私

    :交易记录公开透明,但地址与身份无直接关联(需配合混币等技术增强隐私)。

  • 私钥安全

    :私钥丢失意味着资产永久不可访问,需通过硬件钱包或多重签名增强保护。

通过上述加密机制,数字货币实现了去中心化、防篡改和可信交易,成为其区别于传统金融系统的核心技术基础。

Logo

更多推荐